数学 百分网手机站

八年级上册重要的数学知识点

时间:2017-11-02 数学 我要投稿

  不管是在小学还是初中,数学都是一门非常重要的学科,是我们学生的主科。你知道八年级上册要学习哪些数学知识吗?下面是百分网小编为大家整理的八年级上册数学知识总结,希望对大家有用!

  八年级上册数学知识

  因式分解

  1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解。

  2、常用的因式分解方法:

  (1)提取公因式法:

  (2)运用公式法:平方差公式: ;完全平方公式:

  (3)十字相乘法: (4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。

  (5)运用求根公式法:若 的两个根是 、 ,则有:

  3、因式分解的一般步骤:

  (1)如果多项式的各项有公因式,那么先提公因式;

  (2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;

  (3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。(4)最后考虑用分组分解法。

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:

  ①结果必须是整式

  ②结果必须是积的形式

  ③结果是等式

  ④因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:

  ①系数是整数时取各项最大公约数。

  ②相同字母取最低次幂

  ③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。

  ②确定商式。

  ③公因式与商式写成积的形式。

  分解因式注意事项:

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

  八年级必备数学知识点

  常见的统计图:

  常见的统计图有条形统计图、折线统计图、扇形统计图三种,在解决实际问题时,具体选择用哪种统计图,要依据统计图的特点和问题的要求而定。

  1.条形统计图:

  (1)条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来。条形统计图又分为条形统计图和复式条形统计图。

  (2)特点:能够显示每组中的具体数据;易于比较数据间的差别;如果要表示的数据各自独立,一般要选用条形统计图。

  (3)绘制方法:①为了使图形大小适当,先要确定横轴和纵轴的长度,画出横轴和纵轴;

  ②确定单位长度,根据要表示的数据的大小和数据的种类,分别确定两个轴的单位长度,在横纵、纵轴上从零开始等距离分段;③用长短(或高低)不同的直条来表示具体的数量,直条的宽度要适当,每个直条的宽度要相等,直条之间的距离也要相等;④要注明各直条所表示的统计对象、单位和数量,写上统计图的名称、制图日期,复式条形图还要有图例。

  2.折线统计图:

  (1)折线统计图用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量增减变化。

  (2)特点:折线统计图能够清晰地显示数据增减变化。如果表示的数据是想了解随时间变化而变化的情况,那么就采用折线统计图。

  (3)绘制方法:①根据统计资料整理数据;②用一定单位表示一定的数量,画出纵、横轴;③根据数量的多少,在纵、横轴的恰当位置描出各点;④把各点用线段按顺序依次连接起来;

  ⑤统计图中的数据是不是统计资料整理的数据。

  3.扇形统计图:

  (1)扇形统计图用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。

  (2)特点:扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360º的比。如果表示的数据是想了解各数据所占的百分比,那么一般采用扇形统计图。

  (3)绘制方法:①先算出个部分数量占总数量的百分之几。

  ②再算出表示个部分数量的扇形的圆心角的度数。

  ③取适当的半径画一个圆,并按照上面算出的圆心角的度数在圆里画出各个扇形

  ④在每个扇形中标明所表示的各个部分数量名称和所占的百分数,并用不同的颜色区别

  ⑤写上名称和制图日期。

  八年级上册数学知识要点

  一、投影:

  1.平行投影:太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。

  平行投影的特征:(1)点的投影仍是点;(2)直线的投影一般仍是直线;(3)一点在某直线上,则该点的投影一定在该直线的投影上;(4)直线上两线段之比,等于其影长之比;

  (5)两直线平行,其投影平行或在同一直线上。

  2.中心投影:灯光的光线可以看成是从同一点发出的(即为点光源),像这样的光线所形成的投影称为中心投影。

  中心投影的特征:(1)对应点连线都经过一点,这一点就是光源的位置;(2)物体的投影的大小,是随着光源距离物体的远近而变化的,或者是随物体离投影面的远近而变化的;

  (3)中心投影不能反映原物体的真实形状和大小。

  3.正投影:投影线垂直于投影面时产生的投影叫做正投影。

  正投影的特征:(1)当平面图形平行于投影面时,它的正投影是与它全等的平面几何图形(点的正投影仍是一个点);(2)当平面图形垂直于投影面时,它的正投影是一条线段(线段垂直于投影面时的正投影是一个点);(3)当平面图形位于投影面上时,它的正投影是它本身。

  二、太阳光与影子:

  物体在太阳光线照射的不同时刻, 不仅影子的长短在变化,而且影子的方向也改变,根据不同时刻影长的变换规律,以及太阳东升西落的自然规律,可以判断时间的先后顺序。

  三、灯光与影子:

  在某确定灯光下固定物体的影子与方向是一定的,对灯而言,移动的物体离灯越近,影子越短,离灯越远,影子越长。

  四、视点、视线、盲区:

  眼睛的位置称为视点,由视点发出的线称为视线,看不到的区域称为盲区。


猜你喜欢:

1.八年级数学必备知识点归纳

2.八年级必备的数学知识要点

3.八年级英语上册重要知识点汇总

4.八年级上册政治知识点总结

5.2017年初二数学上册期末试题

6.2017初二数学上册期末试卷

博聚网