数学 百分网手机站

2017初一数学重点知识点归纳

时间:2017-11-16 数学 我要投稿

  初一的学生要知道,学好数学最重要的是基础,只有打好基础,才能听懂后面所学的知识,学习的过程中也不会感觉吃力。下面是百分网小编为大家整理的初一数学重点知识点,希望对大家有用!

  初一数学知识

  一、两点间的距离

  (1)两点间的距离

  连接两点间的线段的长度叫两点间的距离.

  (2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离.

  二、角的概念

  (1)角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边.

  (2)角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.

  (3)平角、周角:角也可以看作是由一条射线绕它的端点旋转而形成的图形,当始边与终边成一条直线时形成平角,当始 边与终边旋转重合时,形成周角.

  (4)角的度量:度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.

  三、由三视图判断几何体

  (1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.

  (2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:

  ①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;

  ②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;

  ③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;

  ④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法.

  四、直线、射线、线段

  (1)直线、射线、线段的表示方法

  ①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.

  ②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.

  ③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).

  初一数学知识要点

  一、几何图形

  1.我们把从实物中抽象出的各种图形统称为几何图形。

  2.有些几何图形的各部分不都在同一平面内,它们是立体图形。如长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等。

  3.有些几何图形的各部分都在同一平面内,它们是平面图形。如线段、角、三角形、长方形、圆等。

  4.立体图形与平面图形虽然是两类不同的几何图形,但是立体图形中某些部分是平面图形,对于一些立体图形的问题,常把它们转化为平面图形来研究和处理。有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形成为相应立体图形的展开图。

  二、 点、线、面、体

  1.立体图形是几何体,简称体;包围着体的是面,面有平面和曲面;面和面相交的地方形成线,线有直线和曲线;线和线相交的地方是点。

  2.几何图形都是由点、线、面、体组成,点是构成图形的基本元素。

  三、 直线、射线、线段

  1.线段:直线上两个点和它们之间的部分叫线段,这两个点叫线段的端点。

  射线:将线段向一个方向无限延长就形成了射线。

  直线:将线段向两个方向无限延长就形成了直线。

  2.点与直线的位置关系

  点p在直线a上(或说直线a经过点p);

  点p不在直线a上(或说直线a不经过点p) 。

  过一点可画无数条直线,过两点有且仅有一条直线。简述为:两点确定一条直线。

  3.线段的中点:把一线段分成两相等线段的点。

  两点的所有连线中,线段最短,简述为:两点之间,线段最短。

  两点间的距离:连接两点间的线段的长度。

  线段的长短比较:⑴度量法;⑵叠合法

  初一数学必背知识点

  一、方程的有关概念

  1.方程:含有未知数的等式就叫做方程。

  2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。

  3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。

  注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。

  二、等式的性质

  (1)等式两边都加上(或减去)同个数(或式子),结果仍相等。用式子形式表示为:如果a=b,那么a±c=b±c

  (2)等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ac=bc

  三、移项法则:把等式一边的某项变号后移到另一边,叫做移项。

  四、去括号法则

  1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

  2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

  五、解方程的一般步骤

  1.去分母(方程两边同乘各分母的最小公倍数)

  2.去括号(按去括号法则和分配律)

  3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

  4.合并(把方程化成ax=b(a≠0)形式)

  5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=ba)。

  六、用方程思想解决实际问题的一般步骤

  1.审:审题,分析题中已知什么,求什么,明确各数量之间的关系。

  2.设:设未知数(可分直接设法,间接设法)。

  3.列:根据题意列方程。

  4.解:解出所列方程。

  5.检:检验所求的解是否符合题意。

  6.答:写出答案(有单位要注明答案)。


猜你喜欢:

1.初一数学知识点

2.初一数学关键知识梳理

3.初一数学知识学期总结

4.北师大版初中数学知识点总结

5.初一数学一元一次方程式知识点

6.八年级数学重点知识归纳

博聚网